S0049-3848(14)00284-9

Original Article

Deciphering the Impact of Water-stress on Plant Growth and Yield Attributes in Tomato Genotypes

Year: 2021 | Month: September | Volume 14 | Issue 3

References (25)

1.Bartels, D. and Sunkar, R. 2005. Drought and salt tolerance in plants. Crit. Rev. Plant Sci., 24: 23–58.

View at Google Scholar

2.Blanchard-Gros, R., Bigot, S., Martinez, J.-P., Lutts, S., Guerriero, G. and Quinet, M. 2021. Comparison of drought and heat resistance strategies among six populations of Solanum chilense and two cultivars of Solanum lycopersicum. Plants, 10: 1720.

View at Google Scholar

3.Bot, A.J., Nachtergaele, F.O. and Young, A. 2000. Land resource potential and constraints at regional and country levels. World Soil Resources Reports No. 90, pp.114, FAO, Rome (Pub). ISSN: 0532-0488.

View at Google Scholar

4.Cantore, V., Lechkar, O., Karabulut, E., Sellami, M.H., Albrizio, R., Boari, F., Stellacci, A.M. and Todorovic, M. 2016. Combined effect of deficit irrigation and strobilurin application on yield, fruit quality and water use efficiency of “cherry” tomato (Solanum lycopersicum L.). Agric. Water Manage., 167: 53–61.

View at Google Scholar

5.Elizabeth, N., Thomas, B. and Thouseem, N. 2018. Evaluation of tomato (Solanum lycopersicum L.) genotypes under water stress based on yield and physiological parameters. Int. J. Curr. Microbiol. App. Sci., 7(1): 214-225.

View at Google Scholar

6.EL-Mansy, A.B., Abd El-Moneim, D., Alshamrani, S.M., Alsafhi, F.A., Abdein, M.A. and Ibrahim, A.A. 2021. Genetic diversity analysis of tomato (Solanum lycopersicum L.) with morphological, cytological, and molecular markers under heat stress. Horticulturae, 7(4): 65.

View at Google Scholar

7.Fahad, S., Bajwa, A.A., Nazir, U., Anjum, S.A., Farooq, A., Zohaib, A., Sehrish, S., Wajid, J., Steve, A., Shah, S., Muhammad, I., Hesham, A., Chao, W., Depeng, W. and Jianliang, H. 2017. Crop production under drought and heat stress: plant responses and management options. Front. Plant Sci., 8: 1147.

View at Google Scholar

8.FAOSTAT. 2020. Available at: http://www.fao.org/faostat/ en/#home

View at Google Scholar

9.Gerster, H. 1997. The potential role of lycopene for human health. J. Am. Coll. Nutr., 16: 109–126.

View at Google Scholar

10.Hussain, M., Malik, M.A., Farooq, M., Ashraf, M.Y. and Cheema, M.A. 2008. Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower. J. Agron. Crop Sci., 194: 193–199.

View at Google Scholar

11.Ilakiya, T., Premalakshmi, V., Arumugam, T. and Sivakumar, T. 2019. Screening of tomato (Solanum lycopersicum L.) hybrids with their parents for various growth related parameters under drought stress. J. Pharmacog. Phytochem., 8(3): 3845-3848.

View at Google Scholar

12.Khaled, M., Sikder, S., Islam, M.R., Hasan, M.A. and Bahadur, M.M. 2015. Growth yield and yield attributes of tomato (Lycopersicon esculentum Mill.) as Influenced by indole acetic acid. J. Environ. Sci., Natural Resources, 8(1): 139-145.

View at Google Scholar

13.Li, Y., Wang, H., Zhang, Y. and Martin, C. 2018. Can the world’s favourite fruit, tomato, provide an effective biosynthetic chassis for high-value metabolites?. Plant Cell Rep., 37(10): 1443–1450.

View at Google Scholar

14.Nankishore, A. and Farrell, A.D. 2016. The response of contrasting tomato genotypes to combined heat and drought stress. J. Plant Physiol., 202: 75–82.

View at Google Scholar

15.Nuruddin, M.M., Madramootoo, C.A. and Dodds, G.T. 2003. Effects of water stress at different growth stages on greenhouse tomato yield and quality. HortScience. 38(7): 1389–1393.

View at Google Scholar

16.Parveen, A., Rai, G.K., Mushtaq, M., Singh, M., Rai, P.K., Rai, S.K. and Kundoo, A.A. 2019. Deciphering the morphological, physiological and biochemical mechanism associated with drought stress tolerance in tomato genotypes. Int. J. Curr. Microbiol. App. Sci., 8(5): 227-255.

View at Google Scholar

17.Pereira, A. 2016. Plant abiotic stress challenges from the changing environment. Front. Plant Sci., 7: 1123.

View at Google Scholar

18.Rai, G.K., Kumar R., Singh A. K., Rai P. K. Rai, M., Chaturvedi A.K. and Rai, A.B. 2012. Changes in antioxidant and phytochemical properties of tomato (Lycopersicon esculentum Mill.) under ambient condition. Pakistan J. Bot., 44: 667-670.

View at Google Scholar

19.Raiola, A., Rigano, M.M., Calafiore, R., Frusciante, L. and Barone, A. 2014. Enhancing the health-promoting effects of tomato fruit for biofortified food. Mediators Inflammation, 2014:139873. DOI: 10.1155/2014/139873

View at Google Scholar

20.Rivelli, A.R., Trotta, V., Toma, I., Fanti, P. and Battaglia, D. 2013. Relation between plant water status and Macrosiphum euphorbiae (Hemiptera: Aphididae) population dynamics on three cultivars of tomato. Eur. J. Entomol., 110: 617–625.

View at Google Scholar

21.Sivakumar, R. and Srividhya, S. 2016. Impact of drought on flowering, yield and quality parameters in diverse genotypes of tomato (Solanum lycopersicum L.). Adv. Hort. Sci., 30(1): 3-11.

View at Google Scholar

22.Taiz, L. and Zeiger, E. 2010. Plant Physiology. 5th edition, Sinauer Associates, pp. 782.

View at Google Scholar

23.Wahb-Allah, M.A., Alsadon, A.A. and Ibrahim, A.A. 2011. Drought tolerance of several tomato genotypes under greenhouse conditions. World Appl. Sci. J., 15(7): 933-940.

View at Google Scholar

24.Zhou, R., Kong, L., Wu, Z., Rosenqvist, E., Wang, Y., Zhao, L., Zhao, T. and Ottosen, C.-O. 2019. Physiological response of tomatoes at drought, heat and their combination followed by recovery. Physiol. Plant, 165: 144–154.

View at Google Scholar

25.Zhou, R., Yu, X., Ottosen, C.-O., Rosenqvist, E., Zhao, L., Wang, Y., Yu, W., Zhao, T. and Wu, Z. 2017. Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. BMC Plant Biol., 17(1): 24.

View at Google Scholar

International Journal of Agriculture Environment & Biotechnology(IJAEB)| In Association with AAEB

27083364 - Visitors since February 20, 2019